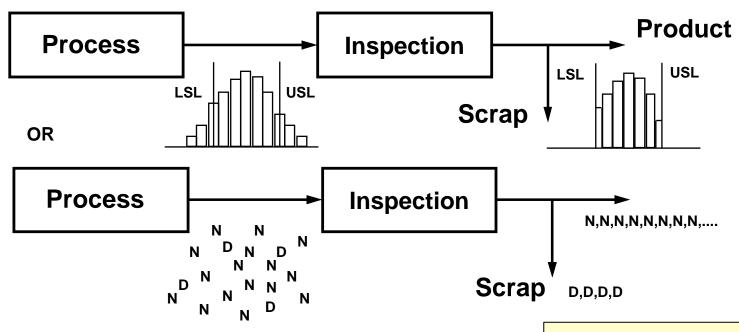
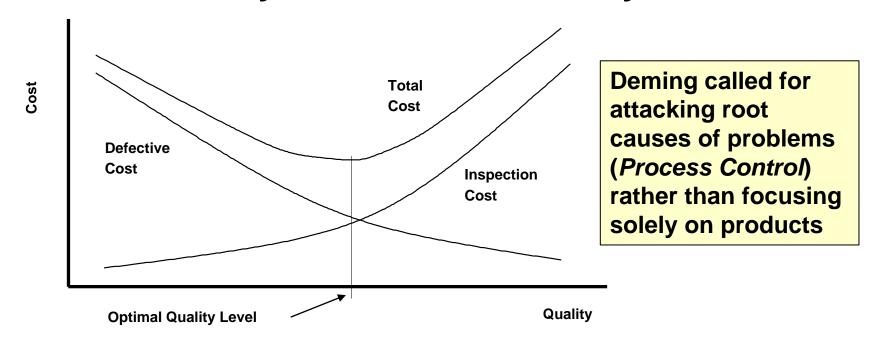

Sutherland Background

- ◆ Academic preparation: University of Illinois at Urbana-Champaign
 - BS and MS in Industrial Engineering
 - PhD in Mechanical Engineering (manufacturing focus)
 - Dissertation: "Dynamics of peripheral milling"
- **♦** Launched business (late 1980's)
 - Industry workshops on quality covered teachings of Deming
 - Manufacturing consulting
 - Software
 - o SPC and DOE
 - o Machining Process Simulations
- Quality Engineering text developed based on workshops
- Faculty position at Michigan Tech (1991)



Traditional Approach to Quality

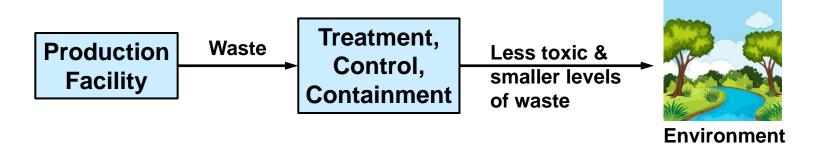

Use inspection to ensure customers receive good products

Product Control

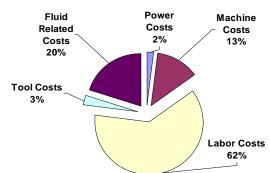
Quality, Cost, & Productivity

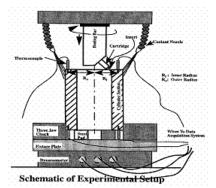
This means there is an optimal level of defective parts Quality and Cost/Productivity become *competing* goals

Cutting Fluids

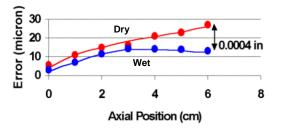

- Spoke with environmental engineers in auto industry about cutting fluids
- ◆ 100 million gals. of fluid used annually in U.S.
- Claimed functions & benefits
 - Cooling & Lubrication
 - Corrosion Inhibition & Chip Flushing
 - Increased Tool Life
 - Improved Surface Finish
 - Increased Dimensional Accuracy
 - Reduced Cutting Forces
 - Improved Machine Tool Life and Function
- Concerns: Negative effects on health and environment, and high cost

Classic Environmental Engineering


- ◆ Environmental engineering traditionally relegated to containing, treating, diluting, controlling, and mitigating waste streams, i.e., addressing a problem that already exists.
- Adopt Deming philosophy: anticipate and avoid/reduce waste in the first place, i.e., identify and eliminate root causes of waste streams (product → process control).


Cutting Fluids: A "Process Control" Approach

- Role of Cutting Fluids in Machining
 - Experimental component
 - o Performed hundreds of tests
 - Processes (Cylinder Boring, Milling, Drilling, Tapping)
 - Analytical component
 - Created models for heat transfer, lubrication, and thermal distortion for the processes
 - Predicted effect of fluids on performance (forces, temperatures, surface error)
- IMPACT: Environmental and health benefits PLUS


substantial cost savings.

Develop data & models to support dry/nearly dry machining applications

Feed (mm/rev)	Spindle Speed (rpm)	Fluid	Heat Source Strength (W)	% of Heat Entering Work	Conv. Coef. (W/m ² K)
0.100	1000	off	858	77%	6
0.254	1000	off	896	47%	6
0.100	2000	off	1597	43%	6
0.254	2000	off	1496	27%	6
0.100	1000	on	858	77%	2014
0.254	1000	on	896	47%	1561
0.100	2000	on	1597	43%	1496
0.254	2000	on	1496	27%	1575

Takeaways from Cutting Fluid Story...

- Need: How to best deal with waste and conspicuous resource consumption??
- Approach: Focus on the sources of waste and consumption. Innovate. Engineering changes.
- ♦ Impact: Less waste produced and less energy/ resources consumed. Reduced environmental impact and improved economic competitiveness.
- ◆ Sustainable Manufacturing

Environmental and Ecological Engineering

- Joined Purdue in 2009 as EEE Head.
- ◆ EEE Need: modern approach lacking for engineering research and teaching on issues related to the environment
- **♦** EEE Approach:
 - Seamlessly integrate Classic Environmental Engineering and Industrial Sustainability. We are unique.
 - o Management of waste within water, soil and air
 - Create engineering system that can exist in harmony with the environment
- ◆ EEE Impact: Quickly grown to one of the largest environmental engineering programs in nation

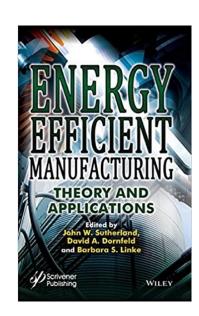
358
BSEEE Degrees
Awarded
Since 2013

50+ Graduate Students

170+ Undergraduate Students Over 50% Female Engineers

21 Faculty Members

Read EEE Insights
Newsletter
Summer 2023!

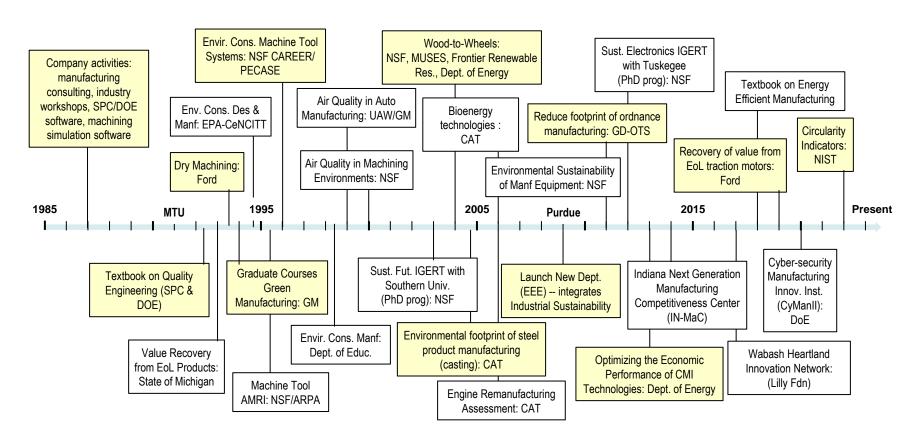

Recent Research Activities

♦ Topics:

 Circular economy, reduce waste/efficient resource use, environmental/economic assessment of technologies/processes/systems, life-cycle engineering, social impacts.

Support:

- Smart manufacturing (Lilly Foundation, IN-MaC)
- Clean energy technologies (DoE Critical Materials Inst.)
- CyManII, ONR, Cummins, IN-DoT, NIST, DARPA, ARL, NSF



Summary of Contributions

- Environmentally responsible design / manufacturing
 - Reducing environmental impact of manufacturing processes / systems AND improving competitiveness
 - Clean energy technologies (wind turbines, EVs, etc.) support via LCAs and TEAs
 - Closing material loops via recycling and remanufacturing circular economy
 - Green manufacturing planning
 - Eco-design of products
- Worked with 30+ companies on improving manufacturing environmental performance.
- Service: EEE Head plus ASME, SME, CIRP, and AEESP activities
- Began offering courses on green manufacturing in 90s
- Impacted 1000s of students via courses on manufacturing, quality, and sustainable manufacturing
- Mentored over 100 graduate students including ~40 PhD students and 40+ scholars/post-docs

Timeline of Industry and Other Key Activities

Thank You for Your Attention!!

jwsuther@purdue.edu

